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ABSTRACT

In the past years, quite a number of algorithmic extensions of the

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) have

been proposed. �ese extensions de�ne a large algorithm design

space, but relatively li�le is known about the performance of most

of these variations and the interaction between them.

In this paper we investigate how various algorithmic extensions

interact and what their impact is on objective functions from the

Black Box Optimization Benchmark (BBOB). Based on the existing

Estimated Running Time (ERT) and Fixed Cost Error (FCE) mea-

sures, a novel algorithm quality measure is proposed to quantify

an impact-score of the variants studied.

Using performance data from running 4,608 available algorith-

mic variations in the con�gurable CMA-ES framework published

previously, decision trees and other data mining methods are used

to analyze performance data. Analysis identi�es algorithmic varia-

tions required for obtaining best performance and identi�es strong

di�erences between objective functions, thereby helping to under-

stand the interaction of algorithmic components for an objective

function and, ultimately, for an objective function class. �e results

also quantitatively con�rm that popular variants such as increasing

population size and elitism generally have a positive impact on

algorithm performance.
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1 INTRODUCTION

Heuristic optimization methods have long been a topic of study,

and have found their way into many industrial applications. Evo-

lutionary algorithms such as the Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [10] are among the most well-known

and widely used of these methods. For most optimization problems

faced in practice, some default optimizer with at least reasonable

performance is usually available. As the use of optimization for

computationally expensive problems continues to grow, running

times grow accordingly. To mitigate this as much as possible, it

is important to use the best performing optimizer. �is Algorithm
Selection Problem [15] has led to a lot of research into trying to �nd

be�er algorithms.

Among these algorithms, many variations on the CMA-ES, such

as Active Update [12], Mirrored (Orthogonal) Sampling [1, 17] and

(B)IPOP [2, 8], have been proposed during recent years. Each of

these aims to improve performance in general or for speci�c func-

tion landscapes. New variants are still regularly introduced, but

their synthesis is complex and involves a lot of human expertise,

while at the same time the interactions of many of the existing

variations are not su�ciently well understood yet. Exploratory

landscape analysis [4, 13] can steer this creation process in inter-

esting directions by identifying landscape properties and how they

interact with certain algorithmic techniques and variants of the

CMA-ES.

Beside di�erent variants, many algorithms also have strategy

parameters that can be tuned to optimize performance for speci�c

cases. Automated algorithm con�guration methods such as SMAC

[11] have recently gained popularity for such optimizer-tuning

problems. �ese methods provide useful improvements for each
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particular problem instance, but li�le general knowledge is usually

gained about the performance properties of the algorithm.

In this paper we present a data mining approach on performance

data for a large number of CMA-ES algorithm con�gurations, cre-

ated using the modular framework introduced by van Rijn et al.[16].

�is approach consists of introducing a mapping to combine the Es-

timated Running Time (ERT) and Fixed Cost Error (FCE) measures

into a single value, which can be used to calculate a quantative

impact score for each variant in the con�guration space. Further-

more, the performance ranking of all these con�gurations, and more

speci�cally the distribution of modules across this ranking, is used

in an a�empt to gain insight into properties of algorithms. Eventu-

ally, these properties should be linked to the landscape properties

already identi�ed by earlier research.

�e rest of this paper is organised as follows. Details of the

algorithm con�guration data used in this research are presented in

Section 2. �is includes a short description of the modular CMA-ES

framework used to generate it. Our proposed quality measure and

impact score comparison method are de�ned in Section 3. Sec-

tion 4 details the various analyses performed using decision trees

(Section 4.1), impact score (Section 4.2) and relative activation cor-

relation (Section 4.3). Finally, an overview of our conclusions and

some suggestions for future work are presented in Section 5.

2 DATASET

In this research we use algorithm benchmarking results obtained

using the modular CMA-ES framework by van Rijn et al.[16] in

which eleven variants are encoded. Referred to as modules, these

can be activated independently and combined arbitrarily. A list of

all modules and their available options are listed in Table 1.

Runs for all 24 noiseless functions of the BBOB suite [9] are

performed in D = 2, 3, 5, 10, 15, . . . , 35, 40 dimensions. Each of

the 24 · 10 = 240 (function, dimensionality) combinations will be

referred to as an experiment. Results for one experiment contain

data records for all possible 2
9×3

2 = 4, 608 CMA-ES con�gurations.

Each data record (ci , ei , fi ) consists of a con�guration speci�ca-

tion ci ∈ {0, 1}9 × {0, 1, 2}2 and a pair of quality measures: the

Estimated Running Time (ERT) ei = ERT(ci ) ∈ R and Fixed Cost Er-
ror (FCE) fi = FCE(ci ) ∈ R. �e values for ei and fi are calculated

from 32 independent runs per con�guration ci , as suggested in [16].

Each run is performed using an evaluation budget b = 1 000 · D.

3 QUANTITATIVE PERFORMANCEMEASURE

�antitative comparisons between optimization algorithms in bench-

marking environments are ideally based on the required runtime.

�e ERT score introduced by Auger and Hansen [2] provides such

a numerical measure based on the expected number of function

evaluations required to reach a prede�ned target value. In practice,

this means ERT scores cannot always be measured when the al-

lowed evaluation budget is not su�cient to reach the target value.

Only a qualitative comparison can be made using the FCE score in

these cases. We propose a quality measure that combines the ERT

and FCE values into a single value.

�is use of two di�erent quality measures currently poses a prob-

lem when performing quantitative analysis on the performance data

described in Section 2. Both quality measures cannot be compared

Table 1: Overview of the available ES modules in the modular
CMA-ES framework from [16]. Formost of thesemodules the

only required options are o� and on, encoded by the values

0 and 1. For quasi-Gaussian sampling and increasing popu-

lation, the additional option is encoded by the value 2. �e

entries in row9, recombinationweights, specify the formula

for calculating each weightwi .

# Module name 0 (default) 1 2

1 Active Update [12] o� on -

2 Elitism (µ, λ) (µ+λ) -

3 Mirrored Sampling [5] o� on -

4 Orthogonal Sampling [17] o� on -

5 Sequential Selection [5] o� on -

6 �reshold Convergence [14] o� on -

7 TPA [7] o� on -

8 Pairwise Selection [1] o� on -

9 Recombination Weights

log(µ+ 1

2
)− log(i)∑

j w j
1

µ -

10 �asi-Gaussian Sampling [3] o� Sobol Halton

11 Increasing Population [2, 8] o� IPOP BIPOP

to each other and are not directly comparable between di�erent

benchmark functions. As a �rst step around this problem, an al-

gorithm’s FCE is only considered relevant in absence of an ERT

score. In other words, any algorithm with an ERT score is de�ned

to always be superior to an algorithm without it. �is follows the

existing convention in reporting on BBOB results, and has already

been proposed in [6].

Next, a useful normalization must be de�ned to allow compar-

isons between functions. By their de�nition, normalizing ERT

values is straight-forward. As a doubling of an algorithm’s ERT

indicates a double expected running time, these values can be nor-

malized linearly. �e minimum ERT value is always greater than

zero, and the maximum is de�ned as

ERTmax = k · b,
where k is the number of runs and b the evaluation budget. Nor-

malization can therefore be applied through division by ERTmax.

FCE values are typically plo�ed on a log-scale in convergence

analysis, suggesting that normalization is best done a�er taking the

logarithm. Normalizing this range is still not trivial. �e maximum

value for most �tness functions is either unde�ned or bound by

the input domain. FCEmax is therefore most easily �xed to the

maximum value found in all k runs. However, the minimum value

can clearly be set to the target value used for ERT calculations.

A�er all, an ERT score can be calculated for any algorithm that

reaches a lower FCE value.

Combining the above, a single value q can be de�ned for con-

�guration c from a given set of algorithm con�gurations C, as

follows:

q(c) =


ERT(c)
ERTmax

if ERT(c) exists

1 +
log(FCE(c)/FCEtarget)
log(FCEmax/FCEtarget)

otherwise,
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Figure 1: �ality Measure vs Rank. �e above graph shows

the proposed quality score for the 4, 608 algorithm con�gu-

rations, sorted according to their quality q on the BBOB F10

function in 2, 3, 5, 10, 15, . . . , 35, 40 dimensions.

where FCEmax = max{FCE(c) | c ∈ C}, and FCEtarget is the FCE

value used as a target for calculating the ERT.

�is maps the (ERT, FCE) pair to the range [0, 2] and allows for

a quantitative comparison between various algorithms and �tness

functions. An example of the quality score progression from the

dataset can be seen in Figure 1. By choosing the range to be [0, 2],
the data can now be used for computational analysis. For q < 1,

our new q-measure always provides an ERT score.

3.1 Impact Score

�e quality measure q proposed above is designed for con�gura-

tions instead of modules. In order to investigate the impact of each

module and the combination of modules, we propose the following

impact score de�nition.

Divide the given set of con�gurations C into the desired subsets

for comparison. To analyze a module x , we obtain subsets C
x
on

and

C
x
o�

of con�gurations where module x is on or o� respectively. Let

q(C) = {q(c) | c ∈ C}

be the set of quality values q associated with con�guration set C.

We expect the distribution of q(Cx
o�
) and q(Cx

on
) to di�er from

each other if some module x has a signi�cant impact on algorithm

performance. However, if module x has no impact, the con�gura-

tions in C
x
on

and C
x
o�

are expected to be randomly interleaved when

sorted by performance q, resulting in a very similar distribution.

�e quantitative impact score I is de�ned as the di�erence between

the mean quality scores q̄(C) of the subsets to be compared:

Ix = q̄(Cx
o�
) − q̄(Cx

on
),

where the mean quality value q̄(C) is de�ned as follows:

q̄(C) =
∑ |C |
i=0

q(ci )
| C | .

Assuming minimization, a positive Ix score indicates a positive

impact of module x , and a negative Ix indicates a negative in�uence.

Table 2: Feature importance score per module. Calculation of

this score is performed by generating 250 randomized deci-

sion trees on all 4, 608 con�gurations, limited to at least 20

con�gurations per leaf node. Listed values are averaged over

the results of all 240 experiments.

Module name Feature importance

Active 0.071

Elitism 0.197
Mirrored 0.018

Orthogonal 0.021

Sequential Selection 0.026

�reshold 0.307
TPA 0.163
Pairwise Selection 0.053

Weights 0.043

Base-Sampler 0.056

(B)IPOP 0.044

Because no assumption of normality can be made on the distrbution

q(C), the two-tailed nonparametric Mann-Whitney U statistical test

is adopted to determine the signi�cance of impact score Ix .

4 ANALYSIS

�is section describes the various methods used to gain insight

in the performance of di�erent CMA-ES variants. First the use of

decision trees is described in Section 4.1. Next, Section 4.2 explores

the impact as de�ned in Section 3.1, both on a per-module and

module interaction basis. Finally Section 4.3 examines how the

module activation is distributed across con�gurations. �e dataset

and a Python Notebook documenting the procedures are available

online on GitHub
1
.

4.1 Decision Tree Feature Importance

Decision trees are commonly used in exploratory data mining,

because they capture the features that most prominently de�ne

subgroups of the data. In this context of algorithm con�gurations,

we expect decision trees to be useful. A�er all, we ultimately wish to

be able to create decision trees based on function properties to select

modules that will bene�t the optimization process. Although this

research does not yet make the step towards identifying properties

of the various �tness landscapes, some empirical decision trees can

be created for each experiment.

�e decision trees for each experiment perform selection ac-

cording to the quality measure q previously de�ned in Section 3.

Because eleven modules can be used to split nodes, the entire trees

quickly become too large to be human-readable. However, they still

contain useful information in terms of which module is selected

for at which point in the tree, also known as the feature importance
measure. Table 2 lists values for each module, calculated as the

mean over all 240 experiments.

1
h�ps://github.com/Energya/cma-es-con�guration-data-mining

https://github.com/Energya/cma-es-configuration-data-mining
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Table 3: Impact score and statistical signi�cance per mod-
ule. �e values shown are calculated using aggregated per-

formance data on all 4, 608 con�gurations for each of the 240

experiments. P-values are calculated using the two-tailed

Mann-Whitney U test.

Module name I
module

p-value

Active -0.111 0.0

Elitism 0.165 0.0
Mirrored 0.013 7.65 · 10

−84

Orthogonal 0.040 0.0

Sequential Selection -0.070 0.0

�reshold -0.398 0.0
TPA 0.072 0.0

Pairwise Selection 0.004 4.25 · 10
−18

Weights -0.091 0.0

Base-Sampler -0.002 1.52 · 10
−21

(B)IPOP 0.061 0.0

A high value for e.g. Threshold convergence is an indication

that a particular module is o�en used for selection near the top

of the trees. Other modules that score high in terms of feature

importance are Elitism and TPA. �e lower values for Mirrored,

Orthogonal and Base-Sampler show that selection according to

these modules does not provide much information to the decision

process.

�e feature importance values indicate how well a given module

can be used to split the data, but not whether this module should be

activated in general to obtain be�er results. For this, individual trees

would have to be examined, or a single tree has to be created from

the results of all experiments. Instead, we continue the analysis

using the impact scores de�ned in Section 3.1.

4.2 Impact Scores

First we examine impact scores based on the activation of single

modules, followed by a discussion of module interactions.

4.2.1 Single Module. Table 3 shows the impact scores and p-

values of all modules, aggregated over all 240 experiments. �ese

results exhibit a clear di�erence in impact score between the various

modules. Elitism has the most positive impact score of 0.165, while

Threshold convergence is the most negative at −0.398. Other

modules such as Pairwise Selection seem to have no overall

impact, with a negligible score of 0.004.

Exploring further, impact scores for various modules are ex-

amined for each experiment separately. Figure 2 shows impact

score heatmaps by objective function for three example modules:

Threshold, Orthogonal and Elitism. �e overall impact scores

from Table 3 are clearly re�ected in the �gures, but di�erences in

behavior for the various experiments are also clearly visible.

Pa�erns can be seen both in the functions and along the dimen-

sionality. For example, Threshold performs increasingly worse

in higher dimensions for the F1, F5 and F21 functions in partic-

ular, while improving in performance in higher dimensionalities
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Figure 2: Heatmaps of module impact per experiment. �e

heatmaps show impact values for the Threshold conver-

gence (top), Orthogonal Sampling (middle) and Elitism

(bottom) modules. All impact scores outside the range

[−0.144, 0.229] are statistically signi�cant according to the

two-tailed Mann-Whitney U test (P < 10
−4). P-values for the

remaining impact scores can be greater than 10
−4

and should

be examined on a case-by-case basis.

for other functions such as F3, F13 and F23. Meanwhile, Elitism

performs exceptionally well in lower dimensionalities, but loses

its positive impact in experiments with more than �ve dimensions.

Orthogonal however slightly increases performance in higher

dimensionalities. �e experiments in 10–40D seem to show a con-

stant pa�ern for all modules towards higher dimensionalities.

4.2.2 Module Interaction. In addition to investigating the impact

of single modules, the same can be done for the interactions between

modules. To calculate the impact of two modules x and y when

activated together, the set of con�gurations C is divided into subsets

C
xy
on

and C
xy
o�

. �e on subset C
xy
on

consists of all con�gurations in

which both module x and y are selected. �e o� subset is then

constructed as C
xy
o�
= C − C

xy
on

.
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Figure 3: Aggregate Module Interaction Impact. Displayed

impact scores are calculated as a mean over all 240 exper-

iments. Each score indicates the di�erence in q-score be-

tween the set of con�gurations with two modules x and y
active, versus the remaining con�gurations. �e heatmap is

symmetrical along the diagonal x = y, which indicates the

single module impact as shown in Table 3.
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(d)

Figure 4: Heatmaps of module interaction impact per func-
tion. Displayed impact scores are averaged over the exper-

iments in 10 di�erent dimensionalities per function. Note

that Figure 4d uses a di�erent scale than the other three

heatmaps because of the smaller range in values.

Figure 3 shows a heatmap of the mean impact scores for each

module combination, averaged over all 240 experiments. Again, the

overall positive and negative impact of Elitism and Threshold

convergence can be clearly identi�ed. It is also interesting that
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Figure 5: Module Interaction Impact Score heatmap for 2D
F24. Note the di�erent value range compared to Figure 3.

the positive and negative impact of these two modules cancel each

other out when they are combined.

A known combination that is also interesting to look at, is the

addition of Pairwise Selection to Mirrored Sampling. Having

been added to maintain the properties of Mirrored Sampling

while avoiding a possible step-size bias, one would expect a (more)

positive impact of their combination than both separate and random.

However, Figure 3 shows their combined impact to be e�ectively

neutral.

Separating the impact scores by function already shows more

diversity. Four examples are shown in Figure 4. Most heatmaps

resemble that of the global distribution, as can be seen in Figure 4a:

Elitism and Threshold convergence are most prominent in terms

of positive and negative impact respectively. An interesting ob-

servation for the F2 function is the combination of Elitism and

(B)IPOP, providing the highest average positive impact over all

tested dimensionalities.

Impact heatmaps for other benchmark functions highlight other

interesting combinations of modules. E�ective interactions be-

tween Elitism, TPA and (B)IPOP can be seen in Figure 4b, while

Elitism in particular is best avoided for F23 as can be seen in

Figure 4c.

A majority of interactions do not seem to produce any signi�cant

impact at all, of which the heatmap in Figure 4d for F24 is a good

example. �is apparent lack of signi�cant interactions still contains

useful information: Threshold convergence and Elitism also do

not stand out in terms of impact, suggesting a di�erent performance

for this function than for others. �e best performing combina-

tions for these experiments actually seem to be the combination of

Threshold convergence with TPA and/or (B)IPOP. Examining

the heatmap Figure 5 for 2D F24 in particular con�rms this with

greater absolute impact values.
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Figure 6: Relative Module Activation. �e above graph shows the fractional activation of each module for the 4 608 algorithm

con�gurations, sorted by their quality on the BBOB F6 function in 3 dimensions. For rank n, the value for a module x is the

number of con�gurations in which this module is active in the top n ranked con�gurations, divided by n. A value of 1 indicates

it has always been chosen up to that point, while 0 shows the opposite. �e value for alternatingly active modules trends to

0.5.

4.3 Relative Module Activation

�e impact score Ix as used above gives a quantitative indication of

the di�erence in quality distributions, but the distribution itself can

also be examined. If a module has a positive impact on performance,

it will be activated more frequently in con�gurations that are ranked

higher. By visualizing the relative activation frequency of a module

in the top n con�gurations, an indication of a module’s behavior
through the sorted con�guration space is obtained.

�e example in Figure 6 shows a high activation frequency of

several modules in the top-ranked con�gurations for a particular

function. Elitism is seen to be selected in all top-100 ranked con�g-

urations, while Active and Threshold are avoided for at least the

top-100 ranked cases. �is information is re�ected by the impact

score heatmaps in Figure 2: Elitism scores high, Threshold scores

low and the neutral impact score of Orthogonal corresponds to

the relative selection frequency of 0.5.

4.3.1 Correlation Clustering. In the relative module activation

plots, we can search for similar behavior of di�erent modules. A

numerical comparison of these behaviors is possible by calculating

the Pearson correlation between the various progressions. In total,

behavior for all eleven modules in each of the 240 experiments is

known, for a total of 2, 640 behaviors.

Displaying the correlation values for all 2, 640 × 2, 640 makes no

sense for two reasons. First, this would result in an extremely large

visualization that is no longer human-readable. Second, many cor-

relations would be between the behavior of two di�erent modules

in di�erent experiments. Such correlation values have li�le or no

meaning.

Figure 7 shows correlation heatmaps between all experiments

where the module has been �xed to Elitism or Threshold. Most

clear is the clustering by dimensionality: 2 and 3D in the bo�om-le�,

5, 10, . . . , 35, 40D in the top-right. Similar clustering can be seen in

the heatmaps of all other modules, but this is too coarse-grained to

produce useful conclusions.

By instead selecting only clusters of behaviors with the highest

correlation values per module, an indication of experiment similarity
can be obtained. �is is especially true when particular modules

perform very well.

�ree best examples of highly clustered behaviors are shown in

Figure 8. �ese show the clustering of Elitism and Threshold

modules for the similar Ellipsoidal and Discus functions (F2, F10 and

F11) in 2D, and of the Step Ellipsoidal function (F7) in 10 – 40D. All

modules are active almost all of the top-100 ranking con�gurations.

Besides identifying experiment similarity, behavior correlation

can also be used to identify successful cooperation between modules.

If two modules cooperate in a particular experiment, their selection

progression can be expected to correlate with each other as well.

As can be expected, most modules do not correlate very well

with each other. Of the combinations that do correlate, the majority

show exceptionally bad rather than good performance. �e two

most interesting cases with both high correlation and a positive

impact are shown in Figure 9.

5 CONCLUSIONS AND OUTLOOK

In this paper, the performance of various CMA-ES extensions is

investigated over the BBOB suite functions, using the results pre-

viously obtained from a huge variety of CMA-ES con�gurations.

Furthermore, a novel quality measure (q) is proposed to quantify

the impact score of a given CMA-ES con�guration by combining

the well-known ERT and FCE measures. �is score enables the

quantitative comparison between con�gurations.
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Figure 7: Correlation of Module Selection Progression. Cor-

relation of the “behavior” of the Elitism (top) and Thresh-

old convergence (bottom) module between the 240 di�er-

ent experiments.

Additionaly, a generic methodology for mining and analyzing

optimization algorithm features and the mapping to function fea-

tures is proposed and applied. Conclusions of analyses through

decision tree feature importance, impact scores and module behav-

ior correlation con�rm each other. �is indicates their potential

use for further research into mining algorithm con�gurations.

�rough this analysis, an overall impacts for several CMA-ES

variants are shown on the BBOB suite: positive for Elitism and

(B)IPOP, and negative for Threshold convergence. �e mag-

nitude of these impact scores corresponds highly to the standard

feature importance measure as determined by creating decision

trees. Additionally, impact scores for module interactions can be

used to identify interesting combinations of variants for speci�c

functions.
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Figure 8: Three clusters of highly correlated Module Selec-
tion Progressions. Plots of the “behavior” of the Elitism

(top), Threshold convergence (middle) and (B)IPOPmod-

ule (bottom). For Elitism and Threshold convergence,

F2, F10 and F11 in 2D are shown, while F7 is shown in 10 –

40D for (B)IPOP.

As suggested in Section 4.2, experiments in higher dimensions on

the BBOB suite are required to provide more information on some

of the dimension-related trends that seem to be present. Further-

more, applying the presented methods to a larger set of algorithm

con�gurations would increase the available knowledge about the

e�ects of di�erent algorithm variations. �is can be done by ex-

panding the set of available variations in the framework used to

generate the data for this experiment, or by adapting these methods

to work with other existing frameworks.

Additionally, this research can be linked to earlier studies on

determining properties of �tness landscapes. By collecting a large

body of algorithm performance knowledge on various function

landscapes, steps can be made towards identifying properties re-

lated to the studied algorithm variants and creating a mapping

between properties of algorithms and �tness functions.
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