
Optimizing Highly Constrained Truck Loadings
Using a Self-Adaptive Genetic Algorithm

Sander van Rijn
LIACS, Leiden University

Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

Email: svr003@gmail.com

Michael Emmerich
Natural Computing Group
LIACS, Leiden University

Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

Email: m.t.m.emmerich@liacs.leidenuniv.nl

Edgar Reehuis
DENC Netherlands B.V.

Slochterenlaan 12, 1405 AM
Bussum, The Netherlands
Email: ereehuis@denc.nl

Thomas Bäck
Natural Computing Group
LIACS, Leiden University

Niels Bohrweg 1, 2333 CA
Leiden, The Netherlands

Email: t.h.w.baeck@liacs.leidenuniv.nl

Abstract—Most research into the Container Loading problem
has been done on theoretical problem sets and while taking one
or two constraints into account. In this paper we discuss the
successful implementation of a self-adaptive Genetic Algorithm
applying only mutation, with a variable mutation rate. This is
applied to a real-world problem with actual problem instances
from industry. We introduce an abstract, indirect representation
for the considered loadings together with two mutation strategies.
Solutions of these different strategies are compared with each
other, a static mutation rate GA, and with solutions created by
human planners as used in industry, for a set of over 500 real-
world problem instances. Furthermore, we examine how our
automated results compare to those generated by experienced
human planners, showing that they are valid loadings and match
fitness values.

I. INTRODUCTION

The Container Loading and Bin-Packing Problem (CLP
and BPP) are closely related optimization problems, requiring
the packing of three-dimensional objects into a larger three-
dimensional space or set of such spaces respectively. Volume
efficiency is the dominant, and often only measure of solution
quality in most literature concerning these problems, as has
been noted in [2], [3].

Rather than studying instances of these problems, we
examine a solver using a new, indirect solution representation
for an actual real-world problem, namely loading products for
hardware stores into truck trailers. Products range from fragile
glass shower cabins to 500 kg pallets of wooden floorboards
and 5 meter long pipes. The selection of products that have to
be loaded into the trailer has been determined in advance.

A defining requirement for our real-world problem is that
the products are placed into stacks that can easily be moved
by a forklift truck. This requirement in combination with such
a strongly heterogeneous set of products makes the methods
described in [1], [4], [5], [7], [8], [9], [11], [12], [13] difficult

Fig. 1: Example Loading. Example of a container loaded with
boxes for multiple clients. Each color represents a different
client to which boxes have to be delivered.

Fig. 2: Container Types. The four container types for which
loadings are to be generated. The front of a container is at the
left. The vertical lines divide the trailer into multiple zones
that are used to indicate the intended location of a box for the
loading process. A so-called bridge is present in the last two
trailers.

to apply in practice, as they rely heavily on three-dimensional
freedom in the placement of the products.

Described in Section II, we encounter six constraints and978-1-4799-7492-4/15/$31.00 c©2015 IEEE

objectives, as identified by Bortfeldt and Wäscher [3], con-
cerning weight distribution, stacking constraints, positioning,
stability, orientation, and complexity, explained in detail in
Sections II-A and II-B. The container types vary in size and
may consist of several separate sections, see Fig. 2.

In Section III we elaborate on the abstract, indirect solution
representation created for this problem and the self-adaptive
Genetic Algorithm used. Furthermore, we explain the fitness
function used in our experiments, which was provided by
industry. The setup of our experiments is explained in Section
IV, with some analysis of the results in Section IV-B. Further
discussion of the results and suggestions for future research
can be found in Section V.

II. PROBLEM DEFINITION

We examine the real-world case of loading truck trailers
with products of various sizes to be supplied to hardware
stores. A single truck may deliver products to up to 25 different
clients. The products are all loaded, and unloaded from one
of four different types of trailers from the sides by a forklift
truck. We will refer to the trailer as a container, to the products
as boxes, and to a configuration of boxes in a container as
a loading. In a loading, safety and convenience are to be
considered via objectives and constraints. An example of a
loading can be seen in Fig. 1. The goal is to create a loading
using a given container and set of boxes, such that the boxes
can be transported as safely and quickly as possible to their
intended destinations.

Containers can include a so-called bridge, a raised area
at the front providing additional surface area over boxes that
are fragile. Fig. 2 shows the four different types of containers
available. The container is effectively divided into three sub-
containers when such a bridge is present, but as interaction
is possible between these sub-containers we cannot examine
them separately.

Boxes can vary greatly in dimensions and weight. This is
referred to as a strongly heterogeneous assortment. Boxes are
categorized in product groups that determine what can and
cannot be stacked on top of each other. A problem instance
consists of a (strongly heterogeneous) set of boxes, usually for
multiple different clients, that have to be delivered on a single
trip. The number of trips required, which clients should be
visited on a single trip and the optimal route along all clients,
is determined in advance, externally.

Loading is done in terms of stacks that can be loaded or
unloaded in a single action, similar to [6], in which a set of
disjunctive box towers is generated. Methods producing tight
loadings, do not take this requirement into account. Instead,
they produce loadings that consist of layers of boxes, and are
therefore not a possible solution within the considered problem
class.

As boxes in a single container are delivered to multiple
clients, all constraints and objectives have to be checked for
all intermediate sections of the trip. A proper loading has
to conform to all constraints and objectives, not only at the
start of a trip, but also after the boxes for each client have
been unloaded. Alternatively, the boxes would have to be
reorganized after each delivery.

A. Hard Constraints

There are hard constraints that limit what boxes can be
stacked directly on top of each other. These constraints are by
product type and by weight. Most boxes may not be stacked
on top of fragile boxes, and the weight of a box may rarely
be more than that of the box below it. These are implemented
as hard constraints: If they are violated, the loading is invalid.

B. Penalties

Primarily, a loading should fit all boxes intended for that
trip into the container. If this is not possible, all boxes for the
client in question will be left out. These then have to be added
to another container, disrupting the scheduled delivery routes,
which is undesirable.

The generated loadings have to be safe to drive with. This
concerns both safety for the driver and for the transported
boxes. For the driver’s safety, weight distribution of the boxes
in the container is the determining factor. If one side is far
heavier than the other, this will impair the handling of the
truck.

Safety for the boxes is determined by how they are stacked
in the container. Boxes that can slide forward when braking
are likely to fall and sustain damage. The general shape of
the loaded boxes in the container should therefore be like a
triangle: High at the front, low at the back.

The remaining penalties concern convenience when un-
loading the boxes. Some clients have a strong preference for
the side that their boxes should be loaded on, usually because
of limited space when unloading. If this preference is then
violated, unloading will become more challenging, taking up
valuable extra time.

How boxes are ordered within stacks is also taken into
account. If boxes for client A are covered by boxes for another
client B when delivering at A, the whole stack has to be
taken out of the trailer first. The boxes for client B are then
placed back into the container. These actions take time and are
therefore undesirable, but often unavoidable due to the hard
stacking constraints.

III. APPROACH

Driven by the complexity of the task at hand, a heuristic
method was chosen to tackle it: A discrete representation
Evolutionary Algorithm, or Genetic Algorithm (GA).

In order to use a GA for this problem, a representation for
the loadings had to be constructed. The details of our represen-
tation can be found in Section III-A. Using this representation,
the GA as specified in Section III-B was implemented. Finally,
we shortly discuss the fitness function, produced by industry,
that was used by the GA in applying its selection operator in
Section III-C.

A. Representation

The solution representation was devised by studying the
steps required to create a loading manually. A loading can be
represented by a set of these steps. Each step contains at least
two pieces of information: Which box is planned, and where
this box is planned.

As sizes of the boxes are listed in centimeters, we use
milimeter precision to prevent rounding errors during calcula-
tion. Using 3D-coordinates in millimeter precision, however,
for containers of size 13,600 × 2,500 × 2,000 mm would
result in a total of 6.8 × 1010 possible coordinates. By using
abstract, relative coordinates instead, this number is greatly
reduced without excluding possible valid loadings.

A representation of a loading has to:

• Deterministically construct a loading,

• Allow enough degrees of freedom for the GA to
explore the fitness landscape.

First we divide the container into a set of areas

A =

{
{L,R} without a bridge
{Lu,Lo,Lb,Ru,Ro,Rb} with a bridge .

L and R stand for left and right, and the subscripts u, o, b
refer to under, on, and behind the bridge respectively. This first
separation of the container into 2 or 6 areas allows a single,
small mutation to quickly switch between left and right, and
the parts of the container in the presence of a bridge. Each
of these parts limits which boxes can be placed by maximum
height.

Because all boxes are loaded and unloaded from the side,
there is no benefit to gain from specifying the exact position
along the width of the container, i.e., the short side. Boxes may
end up in the middle of the container if there is no more space
left-over along the sides. This means that only the position
along the length of the container has to be specified, with a
location at the front of the container always being preferable
to one at the back. We do this in terms of a stack index s.

Definition III.1. Representation
Given a set of n boxes B, a set of areas A in the container and
a set of stack indices S, a loading L of n boxes is represented
by a set of triples

L = {{b1, a1, s1}, {b2, a2, s2}, . . . , {bn, an, sn}},

where bi ∈ B is a box from the set of boxes to be planned,
ai ∈ A is one of the possible areas in the container, si ∈ S
is the index of the intended stack and ∀bi, bj ∈ B | bi =
bj iff i = j, i.e., all boxes are unique. We will refer to a triple
{bi, si, ai} as a step.

A loading will have 6 areas times 20 stacks per area in
a worst-case scenario, resulting in 120 possible coordinates.
This reduces the complexity by a factor of 5 ·108 compared to
specifying coordinates in millimeter precision. Because there
is no physical limit on the number of stacks in an area, a value
of 20 was chosen based on the highest occurring value from
a set of loadings created by human planners.

Algorithm 1 shows how a loading is built from the used
indirect representation. The representation does not directly
describe the resulting loading: If a box does not fit at the
specified location, all other stacks in that area are tried, and
eventually all stacks in the other areas can be attempted. The
algorithm constructs the loading from the representation, one
step {b, a, s} at a time. In lines 4–11, if stack index s matches
a stack currently in a, we try to place box b on top of this

Algorithm 1 Building a Loading from a Representation

1: for step {b, a, s} ∈ L do
2: a′, s′ ← a, s // Make a local copy
3: while box not placed and not all areas tried do
4: if stack s′ exists in a′ then
5: if b fits at (a′, s′) then
6: placeAt(b, a′, s′)
7: a, s← a′, s′ // Copy locals back into L
8: break while
9: else

10: s′ ← s′ + 1
11: end if
12: else
13: if b fits at numStacks(a′) as a new stack then
14: placeAt(b, a′, s′)
15: a, s← a′, s′ // Copy locals back into L
16: break while
17: else
18: s′ ← 0
19: end if
20: end if
21: if all options for s′ in a′ have been tried then
22: a′ ← next(a′) // Next area from A
23: end if
24: end while
25: end for

Algorithm 2 (µ, λ)-self-adaptive GA
1: t← 0
2: P (0) ← generate µ individuals ~r1, . . . , ~rµ, randomly
3: while not terminate do
4: for i = 1 to λ do // Create λ offspring
5: (Li, pm,i) = ~ri ← copy(random choice from P (t))
6: pm,i ← mutate p(pm,i) // Update mutation rate
7: Li ← mutate L(Li, pm,i) // Update steps in loading
8: // with mutation rate pm,i
9: fi ← evaluate(Li)

10: end for
11: P (t+1) ← {~r1:λ, . . . , ~rµ:λ}, select µ best from λ total
12: t← t+ 1
13: end while

stack. Otherwise, in lines 12–20, if stack index s is greater
than the number of stacks currently in area a, we try to place
box b as a new stack in area a. In both cases, if the box fits
at that location, we place it and update the step with s and a.

When a box does not fit at the given location, lines 10
and 18 make s iterate over all other valid stack indices, and
the above process is repeated for each index until the box fits.
Once all stacks in the area a have been tried, in line 22 a
new area is selected, and per area, s iterates over all stacks
in that area. If no fit was found after all stack indices for all
areas have been checked, the box b cannot be placed and the
algorithm continues with the next step {b, a, s}.

This placement algorithm is essential for making sure that
the GA converges in a reasonable amount of time. As muta-
tions are likely to produce invalid steps {b, a, s} in the abstract,
indirect representation, the greedy loading construction is used

A B C D E . . . V W X Y Z

A B D E F . . . W C X Y Z

A B X D E . . . V W C Y Z

Fig. 3: Mutation Example. Demonstration of insert and swap
mutation operators respectively. Top: A loading L consisting
of genes A – Z. Middle: Loading L after gene C was inserted
before gene X. Bottom: Loading L after gene C was swapped
with gene X.

to keep the GA searching with valid loadings. Storing the
found coordinates back into the representation is done in lines
7 and 15 to omit redoing all the searching that the build
algorithm already performed, in future iterations.

B. Self-Adaptive Genetic Algorithm

A GA commonly uses both mutation and crossover oper-
ations to evolve the representations into the final solution, but
using only a mutation operator also provides enough freedom
to explore the search space. Algorithm 2 shows the general
evaluation loop of the GA used in this paper. In a single
evolution cycle, λ offspring are generated by mutating one of
the µ parents. The µ best of the λ generated form the parents
for the next generation.

We compare a fixed mutation rate and a self-adaptive
mutation rate approach, referred to as SA3 by Kruisselbrink
et al. [10]. The SA3 strategy defines the mutation rate as

pm = pm,sa + pm,min, (1)

where
pm,min =

1

n
(2)

is the lower bound. The self-adaptive part pm,sa of the mutation
rate is updated according to the rule

p′m,sa = min

(
1

2
,

1

1 + 1−pm,sa
pm,sa

· exp(γ · N (0, 1))

)
. (3)

The parameter γ was empirically defined as

γ = 0.22. (4)

The mutation rate pm will be initialized to 0.2 through
initializing pm,sa to

pm,sa = 0.2− pm,min. (5)

An individual ~r is defined as a loading L for the static
mutation-rate GA, and as a pair

~r = (L, pm) (6)

for the self-adaptive GA, consisting of both a loading L and
a mutation rate pm. During the mutation phase of the self-
adaptive GA, pm is mutated first according to Eq. 3, followed
by the mutation of L, according to pm.

Because our representation combines a permutation with
integer parameters, a regular bit flip mutation would not
produce the required results. Instead, the mutation rate is used
to determine if a step has to be mutated. When this is the
case, there is a 1

3 -chance for each part of the step to be
mutated. When the box of a step is mutated, the entire step
is swapped with, or inserted before, another randomly chosen
step. An illustration of the different mutations can be seen in
Fig. 3. The random choice of this step is done independent
of the mutation rate. The area and stack coordinates are new,
randomly generated from the ranges [1, 2] or [1, 6], and [1, 20]
respectively.

Early experiments indicated that the self-adaptive mutation
rate occasionally prematurely converges to 1

n , causing stagna-
tion, even before spending 50 percent of the evaluation budget.
To prevent this stagnation, we reset the mutation rate p of
all individuals in the next generation to the initial value of
0.2 if no improvement has been found in the last 10 percent
of the total evaluation budget, since the last improvement
or last stagnation. This forces more aggressive mutation and
encourages further exploration of the search space.

C. Fitness Function

The different objectives that have to be taken into account
by the GA are combined into a single fitness function. For this
research, a function provided by industry was adapted slightly.
The final penalty is the sum of seven penalties. Penalties are
calculated for each intermediate section along the route. A
violation that remains in the loading between multiple stops
is therefore counted multiple times. This causes a violation
concerning boxes that are unloaded at the first stop, to have a
lower total penalty than a similar violation between boxes that
are not unloaded until the last stop.

To evaluate client-related conveniences, the ClientSide
penalty indicates how often boxes for a client are not on the
preferred side. This includes the boxes being spread out over
both sides of the trailer without a preference being present.
Clients for which the total weight of all boxes exceeds 4,000
kg are exempt from this penalty, because unloading that weight
from a single side would destabilize the container. This penalty
was adapted slightly to include a small additional penalty
for the amount of boxes violating the preference, in order
to encourage convergence when a mutation towards a better
solution occurs. Additionally, whenever the order of boxes
does not match the order in which they are to be unloaded, a
ClientOrder penalty is given.

Safety is evaluated indirectly by penalizing potentially
dangerous situations. Having the overall shape of the loading
approximating a triangle, as explained in Section II-B, is
done to decrease the risk of boxes sliding. The corresponding
penalties are calculated based on the height difference between
stacks. When the forward stack is taller, a StackPlus penalty
is added, otherwise a higher StackMinus penalty is given.
Together, they make up the StackPattern penalty. For stacks
consisting of more than 4 boxes, a StackHeight penalty is
added. Another WeightBalance penalty is added depending on
the weight distribution in the container. As roads tend to have
a slightly convex shape, the penalty for a heavier left side is
lower than for a heavier right side, when driving on the right
side of the road.

0 50 100 150 200 250
Number of Generations

0.00

0.05

0.10

0.15

0.20

A
d
a
p
ti

v
e
 M

u
ta

ti
o
n
 R

a
te Mutation Rate of Best Individual

Average Mutation Rate per Generation

0 50 100 150 200 250
Number of Generations

103

104

105

106

P
e
n
a
lt

y

Lowest Penalty

Lowest Penalty per Generation

Fig. 4: Penalty and Mutation Rate Development. Development of the penalty and self-adaptive mutation rate for a typical problem
instance using the self-adaptive GA, with a (5,35) strategy and 50/50 mutation operator. Left: The adaptive mutation rate pm,sa
over time. Right: Penalty of the constructed loading over time. Penalty values are plotted on a log scale.

0 50 100 150 200 250
Number of Generations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

A
d
a
p
ti

v
e
 M

u
ta

ti
o
n
 R

a
te Mutation Rate of Best Individual

Average Mutation Rate per Generation

0 50 100 150 200 250
Number of Generations

103

104

105

P
e
n
a
lt

y

Lowest Penalty

Lowest Penalty per Generation

0 50 100 150 200 250
Number of Generations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
d
a
p
ti

v
e
 M

u
ta

ti
o
n
 R

a
te Mutation Rate of Best Individual

Average Mutation Rate per Generation

0 50 100 150 200 250
Number of Generations

103

104

105

P
e
n
a
lt

y

Lowest Penalty

Lowest Penalty per Generation

0 50 100 150 200 250
Number of Generations

0.00

0.05

0.10

0.15

0.20

A
d
a
p
ti

v
e
 M

u
ta

ti
o
n
 R

a
te Mutation Rate of Best Individual

Average Mutation Rate per Generation

0 50 100 150 200 250
Number of Generations

103

104

105

106

P
e
n
a
lt

y

Lowest Penalty

Lowest Penalty per Generation

Fig. 5: Influence of Mutation Rate Reset. Development of the self-adaptive mutation rate for runs in which one or multiple resets
occurred. Top row: Mutation rate is reset once, improving the final result. Middle row: Consecutive resets towards the end, when
a low penalty has been reached. Bottom row: Continuous resets starting before 50% of the evaluation budget has been spent,
likely due to faster than expected convergence.

St
at

ic

(1
,1

0)

50
/5

0

Sw
ap

In
se

rt

GA Configuration

8000

6000

4000

2000

0

2000

4000

6000
D

if
fe

re
n
ce

 w
it

h
 M

a
n
u
a
l
P
e
n
a
lt

y

Fig. 6: Mutation Strategy Comparison. Box plot of the GA
generated penalty values, excluding penalty for boxes that
could not be placed, subtracted from the manual results. A
positive result indicates the GA outperforming the manual
planning.

TABLE I: Boxes Not Placed. The number of runs resulting in
a loading without all boxes being placed, and the percentage
of the 32486 boxes in total that could not be placed, for each
of the GA configurations.

Static (1,10) 50/50 Insert Swap
Incomplete Loadings 247 76 76 80 76
% Boxes Not Placed 1.481 0.268 0.277 0.299 0.268

Because the area under the bridge is intended for long,
fragile and small boxes, an artificial UnderBridge penalty was
added to discourage placement of heavy, large boxes under the
bridge. As these larger boxes could not receive StackPattern or
StackHeight penalties under the bridge, the GA would place
as many boxes there as possible, resulting in the small and
fragile boxes ending up spread out through the container.

Because the penalties for these different objectives have
not been expressed in a common unit, they have no intrinsic
meaning. Common penalty values for a manually created
loading can be found between 103 and 105. For every box that
does not fit in the container, an additional penalty of 105 is
added, as not delivering a box is the least desirable possibility.

IV. EXPERIMENTS

We perform a number of experiments to compare the
different available options for this GA. A fixed mutation rate
is compared with the self-adaptive mutation rate strategy.
Furthermore, values (1,10) and (5,35) for (µ, λ) of the GA are
evaluated, and a comparison is made between three different
mutation strategies: Swap, insert and a 50/50 hybrid mutation
strategy that randomly picks between the first two. All options
are tested with respect to the default self-adaptive, (5,35),
50/50 configuration. This gives a set of 5 configurations to
be tested.

Clie
nt

Si
de

Clie
nt

Ord
er

St
ac

kH
ei
gh

t

W
ei
gh

tB
al
an

ce

Und
er

Brid
ge

St
ac

kP
lu

s

St
ac

kM
in

us

St
ac

kP
at

te
rn

Penalty Type

0

1000

2000

3000

4000

5000

6000

7000

8000

P
e
n
a
lt

y
 V

a
lu

e

Fig. 7: Penalty Composition. Box plot of the penalty value
per objective for the self-adaptive, (5,35), 50/50 strategy.
The StackPattern penalty is the sum of the StackPlus and
StackMinus penalties.

In the experiments we use a set of 528 problem in-
stances for which a solution by a human planner is available.
Combined, this set consists of 32486 boxes to be placed into
a container. For each configuration the evaluation budget is
10, 000 evaluations; 1, 000 or 286 generations for the (1,10)
and (5,35) strategies respectively. With 5 configurations of the
GA to run for each problem instances, this means a total of
5× 528 runs. Combined with the manually created solutions,
we obtain 6 possible loadings for each problem instance with
the corresponding total and objective specific penalties.

The experiments are performed on several desktop com-
puters. The least powerful PC is equipped with an Intel Core
i3 dual-core processor with 4 GB RAM, while the software is
written in Python. On average, a single experiment of 10, 000
fitness evaluations takes around 10 minutes to complete. This
is comparable to the time required by a human planner for
these problem instances.

A. Behavior

Figure 4 shows the behavior of the self-adaptive GA for
a typical problem instance. Initially, the mutation rate offset
pm,sa increases slightly, but as time progresses, it drops further
towards zero. Occasionally, the mutation rate will increase
again, characterizing a properly functioning self-adaptive GA.

The development of the penalty for a typical run can be
separated into two parts: The fitting and optimizing phase. For
the first 60 generations in the run seen in Fig. 4, not all
boxes could be fit in the container, indicated by a penalty
of more than 105. During this phase, fitting an additional
box into the container is always preferred over reducing
penalties of an existing loading. As the loading becomes more
and more optimized during this fitting phase, the volume
of spaces between stacks and boxes decreases, allowing for
more boxes to fit into the container. Placing a new box into
the container somewhere generally causes the loading to be
shuffled, increasing the penalties.

TABLE II: Improvements per Penalty. Number of runs per
GA configuration in which the GA performed better than
the manually generated loading. Note that runs where both
loadings resulted in an equal penalty are not included in these
results. The numbers in bold indicate the best performance for
that penalty.

Objective Static (1,10) 50/50 Insert Swap
ClientSide 119 203 208 201 219
ClientOrder 122 115 109 95 108
StackHeight 39 42 41 37 41
WeightBalance 231 224 234 226 209
UnderBridge 81 163 165 164 173
StackPlus 146 181 210 173 188
StackMinus 205 248 258 250 263
StackPattern 185 241 259 234 242
Average 141 177 185 172 180

Once all boxes fit into the container, the optimizing phase
begins. Individuals that leave a box out again are least likely
to survive to the next generation, and the GA can focus on
reducing the remaining penalties. Figure 7 illustrates which
penalties are most decisive in this convergence process, namely
StackPattern and WeightBalance.

The differing outcomes of resetting the mutation rate can
be seen in Fig. 5. Ideally, resetting the mutation rate makes
the GA continue to explore when stagnating prematurely.
This behavior is illustrated in the top row of Fig. 5, where
stagnation occurred after approximately 130 generations. The
reset is clearly visible by the spike in the average mutation
rate per generation after 160 generations. A small increase in
the average fitness can also be seen around this point. A new
optimum is found soon after, allowing the GA to continue
without further resets.

Shown in the middle row of Fig. 5 is the behavior that the
GA no longer converges in the final 30 percent of the given
evaluations. In these cases, it is unlikely that the GA resumes
converging, causing the mutation rate to reset multiple times
without improvements. The reset of the mutation rate is again
marked by a rise in the value of the best fitness per generation,
as elitism is not allowed. However, convergence to the best
value found so far does not occur, resulting in consecutive
resets through the rest of the process. Note that the mutation
rate is reset before it converges back to its former value. This
behavior is very common whenever resets occur.

In problem instances consisting of few boxes, behavior as
in the bottom row of Fig. 5 is seen. After early convergence to
a low penalty value within the first half of the given evaluation
budget, no mutation manages to find an improvement, resulting
in mutation rate being reset continuously throughout the rest of
the process. Problem instances with a small number of boxes
are especially likely to display this behavior.

B. Results

Figure 6 shows the distribution of the penalty for the result
of each GA configuration, subtracted from the penalty for the
manual loading. The static 1

n -mutation rate clearly performs
significantly worse than the other options that all use the self-
adaptive strategy. Close to 75 percent of the runs result in a

TABLE III: Stagnations. Data concerning the number of times
a run stagnated. Stagnating Runs is the amount of runs in
which stagnation occurred. Stagnations/Run is the average
number of times a stagnation occurred.

Strategy Stagnating Runs Stagnations/Run
Static 110 3.0
(1,10) 418 3.5
50/50 308 3.1
Insert 337 3.0
Swap 277 3.0

Fig. 8: Comparison of Loadings. Two valid loadings for the
same problem instance. Top: A loading as generated by the
self-adaptive GA. Bottom: A loading as created by a human
planner.

higher penalty than the manual loading. In contrast, the average
of the difference between the penalties for the other strategies
is close to zero.

Given that the common range of penalties for loadings is in
the order of 103–104, notice the spread between −5 · 103 and
6 · 103 in the differences between the penalties seen in Fig. 6.
While this spread is too large to argue that any configuration
of the GA will consistently generate better loadings, this even
distribution around zero confirms that results will be useful as
is or after manual improvements.

Of the set of boxes per problem instance, Table I lists the
percentage of boxes that the GA was not able to fit into a
loading. The static-mutation strategy has the lowest success,
with almost half of all runs encountering at least one box not
being placed. All self-adaptive mutation rate strategies resulted
in such a case for 15 percent of the problem instances. The
percentage of the total number of boxes that could not be fit
into a loading, is very low for all mutation strategies.

Table II shows the number of runs for which a GA
configuration generated a lower penalty for a certain objective
than the loading by the human planner. The low numbers for
the ClientOrder, StackHeight and UnderBridge penalties are
supported by Fig. 7, where it can be seen that those penalties
have the highest probability of scoring zero, which cannot
be improved upon. The remaining values for all self-adaptive
strategies show that the GA regularly earns a lower penalty in
the most influential penalties, contributing to overall penalty
values that can compete with those of manual loadings.

Table III lists the number of runs for which no stagnation
occurred. It becomes clear immediately that the static mutation

rate performed best in terms of continually finding improve-
ments. Only 20 percent of runs encountered stagnation, with
an average of 3.0 stagnations per run. The (1,10) strategy per-
forms worst, with around 80 percent of the runs encountering
stagnation, significantly worse than the 50–60 percent for each
of the (5,35) strategies. Although the difference is small when
considering the average number of stagnations per run, the
(5,35) strategy outperforms the (1,10) strategy.

An example of the generated loadings can be seen in Fig. 8.
The differences between these loadings are due to several best
practices that a human planner uses when creating a loading,
such as placing tall boxes against the bridge, and combining
large, flat boxes together into stacks on or under the bridge.
The GA has partially emulated these, by placing the same tall
boxes close together and creating stacks with several large,
flat boxes. With a few minor adjustments, the shortcomings
can be solved to create a loading that could meet the quality
of loadings created by human planners.

V. CONCLUSIONS AND OUTLOOK

We have shown that it is possible to employ a self-adaptive
GA for generating solutions to a highly constrained Truck
Loading Problem, using an abstract, indirect representation to
reduce complexity while maintaining the required degrees of
freedom for optimization. The solutions can be generated in
reasonably short amounts of time on regular desktop com-
puters, which is essential for use of the method in industry.
Furthermore, we have demonstrated that solutions generated
by the GA are valid and match the penalty values of loadings
created by human planners.

Most solutions generated by the GA fit all boxes into
the container, which is the most important objective. Exactly
how the boxes are ordered in the container can still differ
significantly between loadings generated with the GA and
those created by human planners. This can be seen in Fig. 8.
Both the loadings of the GA and human planner are valid. The
man-made loading shows more signs of having been planned
using a set of best practices. This suggests that the generated
loadings can be used directly, or used as a starting point. If
the loading shows enough promise, a human planner can save
time by only correcting those situations which are undesirable.
Otherwise, it can easily be dismissed and the loading can be
planned manually.

The used fitness function consists of an aggregation of
multiple, unit-less penalties, that was not designed with use by
a GA in mind. It contains all elements that are to be considered
for evaluating a loading, but it does not properly reflect the
preference for the desired structure within loadings. As Fig.
7 shows, some of these penalties rarely produce any high
values, while others dominate the total penalty value. These
inconsistent penalties are a sign that the fitness function is not
properly balanced; the priorities of the human planner do not
fully match the penalties given to loadings.

In most cases, the properties that define a good loading are
more easily described in terms of the best practices used by
human planners than in terms of objectives or penalty values.
Certain boxes are commonly placed together, and can have a
preferred place in the container. These preferences are not well
defined and will often conflict with other penalties in the fitness

function. This was further confirmed in an interview with two
experienced human planners, as they did not agree over the
preference order of a set of example loadings consisting of
only a small number of boxes.

A more accurate fitness function is required to further
improve the generated loadings. First, the penalties should
be expressed in the same unit, such as a monetary value
for additional time taken on a ClientOrder penalty. Next,
the remaining and combined penalties have to be aggregated
according to the correct ratios. As manually defining ratios
for such a function is difficult, self-learning could be used
to identify the ratios that human planners implicitly use in
applying their best practices.

Self-learning can also be applied in emulating the best
practices themselves, as they are used during the planning
process of human planners. Preferences of which types of
boxes are stacked on each other could be identified and
used to create a directed mutation operator, that emulates the
preferrential planning of certain boxes in man-made loadings.

ACKNOWLEDGMENTS

The authors would like to thank Paul Dragstra and Joost
Leuven for the many useful discussions, and the anonymous
reviewers for their comments.

REFERENCES

[1] S. Allen, E. Burke, and G. Kendall. A Hybrid Placement Strategy for
the Three-Dimensional Strip Packing Problem. European Journal of
Operational Research, 209(3):219–227, 2011.

[2] E. Bischoff and M. Ratcliff. Issues in the Development of Approaches
to Container Loading. Omega, 23(4):377–390, 1995.

[3] A. Bortfeldt and G. Wäscher. Constraints in Container Loading – A
State-of-the-Art Review. European Journal of Operational Research,
229(1):1–20, 2013.

[4] T. Dereli and G. Sena Das. A Hybrid Simulated Annealing Algorithm
for Solving Multi-Objective Container-Loading Problems. Appl. Artif.
Intell., 24(5):463–486, may 2010.

[5] M. Eley. Solving Container Loading Problems by Block Arrangement.
European Journal of Operational Research, 141(2):393–409, 2002.

[6] H. Gehring and A. Bortfeldt. A Genetic Algorithm for Solving the
Container Loading Problem. International Transactions in Operational
Research, 4(5-6):401–418, 1997.

[7] J. F. Gonçalves and M. G. Resende. A Biased Random Key Genetic
Algorithm for 2D and 3D Bin Packing Problems. International Journal
of Production Economics, 145(2):500–510, 2013.

[8] H. Hasni and H. Sabri. On a Hybrid Genetic Algorithm for Solving the
Container Loading Problem with no Orientation Constraints. Journal
of Mathematical Modelling and Algorithms in Operations Research,
12(1):67–84, 2013.

[9] M. Juraitis, T. Stonys, A. Starinskas, D. Jankauskas, and D. Rubliauskas.
Randomized heuristic for the container loading problem: Further inves-
tigations.

[10] J. Kruisselbrink, R. Li, E. Reehuis, J. Eggermont, and T. Bäck. On the
Log-Normal Self-Adaptation of the Mutation Rate in Binary Search
Spaces. In GECCO’11, pages 893–900. ACM, 2011.

[11] F. Parreño, R. Alvarez-Valdes, J. Oliveira, and J. Tamarit. Neighborhood
Structures for the Container Loading Problem: a VNS Implementation.
Journal of Heuristics, 16(1):1–22, 2010.

[12] L. Wei, W.-C. Oon, W. Zhu, and A. Lim. A Reference Length Approach
for the 3D Strip Packing Problem. European Journal of Operational
Research, 220(1):37–47, 2012.

[13] Y. Wu, W. Li, M. Goh, and R. de Souza. Three-Dimensional Bin
Packing Problem with Variable Bin Height. European Journal of
Operational Research, 202(2):347–355, 2010.

