Optimizing Highly Constrained Truck Loadings Using a Self-Adaptive Genetic Algorithm

Sander van Rijn Edgar Reehuis Michael Emmerich Thomas Bäck

LIACS, Leiden University

IEEE CEC 2015 May 26

We consider a variation of the Container Loading Problem regarding the delivery of a strongly heterogeneous set of boxes by side-loaded truck to DIY stores:

- 30~130 boxes per truck
- $1{\sim}25$ different customers per trip

We refer to a truck as a container, and a configuration of boxes in a container as a loading

Approach

Introduction (cont.)

A human planner takes $10 \sim 15$ minutes to make a loading

Existing automated solvers were incompatible with the constraints and objectives

Figure: Examples from other automated solvers

Figure: An actual loading in a truck trailer with a so-called 'bridge'

Constraints and Objectives

There are many criteria that determine the quality of a loading. We distinguish two kinds of criteria:

Constraints and Objectives

There are many criteria that determine the quality of a loading. We distinguish two kinds of criteria:

Violating a hard constraint makes a loading invalid

Constraints and Objectives

There are many criteria that determine the quality of a loading. We distinguish two kinds of criteria:

- Violating a hard constraint makes a loading invalid
- A loading will receive a penalty in the fitness function for not following an objective

Constraints and Objectives (cont.)

The hard constraints we consider are the following:

- [Two boxes may not occupy the same space]
- Boxes may have limited overhang
- Boxes may only be stacked in stacks
- Boxes may only be stacked according to type-dependent rules

Constraints and Objectives (cont.)

The penalties that are used in determining the fitness:

- Number of boxes left out
- Weight distribution (left/right)
- "Stack pattern" (potential damage)
- Inconvenient client order
- Keeping boxes for one client on the same (preferred) side
- Stack height

A Monte Carlo search can produce many valid, but likely far from optimal loadings

Due to the large search space and complex evaluation, we choose a Genetic Algorithm with a discrete representation

Genetic Algorithm

We apply a GA using only a self-adaptive mutation, according to [Kruisselbrink et al. 2011]

Furthermore, we reset the step size if no improvement occurs after a certain number of generations since the last improvement

Figure: An example of a step size reset

A naive representation, only controlling placement order, would result in insufficient freedom to recreate most loadings

A naive representation, only controlling placement order, would result in insufficient freedom to recreate most loadings

Using 3D-coordinates in millimeter precision would give 6.8×10^{10} possible coordinates for a box: too much freedom, especially since many of these are effectively equivalent anyway!

A naive representation, only controlling placement order, would result in insufficient freedom to recreate most loadings

Using 3D-coordinates in millimeter precision would give 6.8×10^{10} possible coordinates for a box: too much freedom, especially since many of these are effectively equivalent anyway!

Instead we observe a human planner and derive a representation from their actions:

Add box **b** to the stack **s** in area **a**

S. van Rijn, E. Reehuis, M. Emmerich, T. Bäck

Optimizing Highly Constrained Truck Loadings

Representation (cont.)

Emulate manual placement using triples: (BoxID, Area, Stack)

S. van Rijn, E. Reehuis, M. Emmerich, T. Bäck

Test set:	528 real world cases		
Benchmark:	comparison with human score		
Evaluation budget:	10,000		

Tests:

Strategy:static, adaptivePopulations:(1,10), (5, 35)Mutations:swap, insert, 50/50

Results

How are the relative weights of the penalties distributed in loadings?

In how many out of the 528 cases is our GA (strictly) better than the human planner?

Davalta	Ctatia	$(1 \ 10)$		Lucast	C
Penalty	Static	(1,10)	50/50	Insert	Swap
ClientSide	119	203	208	201	219
ClientOrder	122	115	109	95	108
StackHeight	39	42	41	37	41
WeightBalance	231	224	234	226	209
UnderBridge	81	163	165	164	173
StackPlus	146	181	210	173	188
StackMinus	205	248	258	250	263
$StackPattern^1$	185	241	259	234	242
Average	141	177	185	172	180

¹) StackPattern penalty = StackPlus penalty + StackMinus penalty

Spread of *penalty_{manual} – penalty_{GA}* (positive: GA is better)

S. van Rijn, E. Reehuis, M. Emmerich, T. Bäck Optimizing Highly Constrained Truck Loadings LIACS, Leiden University

How often did a run stagnate?

How many stagnations occurred per stagnating runs?

Strategy	Stagnating Runs	Stagnations/Run
Static	110	3.0
(1, 10)	418	3.5
50/50	308	3.1
Insert	337	3.0
Swap	277	3.0

How many loadings did not fit all boxes?

What percentage of the 32,486 boxes were not placed?

	Static	(1,10)	50/50	Insert	Swap
Incomplete Loadings	247	76	76	80	76
% Boxes Not Placed	1.48	0.27	0.28	0.30	0.27

S. van Rijn, E. Reehuis, M. Emmerich, T. Bäck

Optimizing Highly Constrained Truck Loadings

A comparison of typical actual loadings:

Figure: A loading as generated by the self-adaptive GA

Figure: A loading as created by a human planner

	Problem Description		Conclusion
Conclusion			

- The devised representation is effective at describing loadings
- A self-adaptive GA clearly outperforms a GA with a static mutation rate
- There is little difference between the performance of different GA configurations that use self-adaptation
- The lack of formally defined objective measures makes it difficult to construct a fitness function that will help the GA produce desired loadings
- Some of the currently GA-generated loadings can be directly used

Future Work

- Improve the fitness function
- Find optimal parameters for penalties
- Improve mutation operator by automated learning from human experience

Problem Description		Conclusion

Thank you for your attention